Performance Grading of Bitumen

H. Bahia

The University of Wisconsin-Madison
Outline

• Background on Transport
• Targets of Bitumen Specifications
• Traditional Specifications
• Performance grade Specifications
 – Why we need to learn about them
 – Test methods necessary
 – The Superpave Bitumen grading system
Transport Network

2.6 Transport network comparison between EU 25, USA, Japan, Russia and China - 2001 (thousand km)

<table>
<thead>
<tr>
<th></th>
<th>EU 25</th>
<th>USA</th>
<th>Japan</th>
<th>China</th>
<th>Russia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Road network</td>
<td>4,801</td>
<td>7,173</td>
<td>1,172</td>
<td>1,701</td>
<td>585</td>
</tr>
<tr>
<td>Motorway network</td>
<td>55.6</td>
<td>90</td>
<td>6.9</td>
<td>20</td>
<td>-</td>
</tr>
<tr>
<td>Railway network</td>
<td>299.9</td>
<td>315.3</td>
<td>40.2</td>
<td>88.8</td>
<td>126.4</td>
</tr>
</tbody>
</table>

Source: European Commission.
How much is spent on Roads?

3.2 Allocation of EU Structural Funds, 2000-2006

Allocation of EU Structural Funds to transport infrastructures, 2000-2006

- Roads 64%
- Urban transport 11%
- Multimodal transport 12%
- Railways 5%
- Maritime transport 3%
- Others 4%
- Airports 1%

Source: CEDEX
1.1 Economic Importance of Road transport in EU 15 - 2003*

<table>
<thead>
<tr>
<th>Automotive manufacturing</th>
<th>Turnover (EUR billion)</th>
<th>Turnover (% EU GDP)**</th>
<th>Employment (million people)</th>
<th>Employment (% of total)**</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>452</td>
<td>4.86</td>
<td>1.90</td>
<td>1.12</td>
</tr>
<tr>
<td>Manufacture of Powered</td>
<td>1.5</td>
<td>0.02</td>
<td>0.23</td>
<td>0.14</td>
</tr>
<tr>
<td>Two Wheelers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor parts Manufacturing, Motor Trade, Maintenance, Services, and Aftermarket***</td>
<td>607</td>
<td>6.52</td>
<td>3.02</td>
<td>1.77</td>
</tr>
<tr>
<td>Fuell Refining & distribution</td>
<td>243</td>
<td>2.6</td>
<td>0.54</td>
<td>0.29</td>
</tr>
<tr>
<td>Fuel Retail</td>
<td>250</td>
<td>2.7</td>
<td>0.44</td>
<td>0.26</td>
</tr>
<tr>
<td>Road Transport, Own Account, Public Transport</td>
<td>195</td>
<td>2.01</td>
<td>6.30</td>
<td>3.70</td>
</tr>
<tr>
<td>Road Construction and Maintenance</td>
<td>98</td>
<td>1.06</td>
<td>3.22</td>
<td>1.89</td>
</tr>
<tr>
<td>Motorway Operators</td>
<td>15</td>
<td>0.16</td>
<td>0.06</td>
<td>0.03</td>
</tr>
<tr>
<td>Total Road Sector</td>
<td>1,861.5</td>
<td>19.93</td>
<td>15.71</td>
<td>9.2</td>
</tr>
</tbody>
</table>

Source: ERF, Industry.
Common Targets for Bitumen Specifications

• Constructability

• Performance

• Durability
Historical Specifications

Consistency (pen or vis) hard

Temperature, °C: -15, 25, 60, 135

Penetration: 0 sec, 5 sec

Vacuum

A, B, C are same grade!

A, B, C
Conventional Bitumen Grades

Penetration Grades

Viscosity, 60°C (140°F)

AC 40
AC 20
AC 10
AC 5
AC 2.5

AR 16000
AR 8000
AR 4000
AR 2000
AR 1000
Asphalt Behavior

- **Hard**: Lower Temp, Shorter loading time (High Traffic Speed)
- **Soft**: Higher Temp, Longer loading time, Slower Traffic Speed
- **Elastic**: Lower Temp
- **Viscous**: Higher Temp
Effects of Time and Temperature

Flows rapidly at high temperatures

60 °C

1 hour

Flows slowly with time at lower temperatures

25 °C

1 hour

10 hours
Effects of Visco-Elasticity

Elastic

Viscous

Before Load

During Load

After Load

Before Load

During Load

After Load

Tire Load

Recoverable Deformation

Tire Load

Non-Recoverable Deformation

Effects of Visco-Elasticity
Performance Grading Should:

- Include measures describing stress-strain relationships under field loading.
- Consider the pavement conditions
 - Temperature, traffic speed, traffic volume, and pavement structure.
- Include acceptance limits derived from experience and factual field performance.
Variables that affects Binder Selection

• **Geographic Area:**
 – Air Temperature, solar radiation
 – Pavement Temperature: Max & Min

• **Traffic volume:** High, Medium, Low

• **Traffic speed:** Fast, Slow

• **Pavement Structure:** Strong, Weak
 – Stress and strain
Selection of Grades by Pavement Temperature

Maximum: @ 20-mm below surface
(approximately 18 C higher)

Minimum: @ surface
(approximately 8 C higher)
Important Considerations

Traffic and Pavement Structure

- Effect of traffic Volume & Speed
 - ESALS !, Speed limits!

- Pavement Damage
 - Weak vs. Strong base!
Performance Grading – PG system

Thermal Cracking

Fatigue Cracking

Rutting

Production

Pavement Temperature, C

-20 20 60 135
Performance Grading of Asphalt Binder- The Superpave System

- **Workability** at Construction Temperatures
 - Rotational Viscometer (RV) – η at 135 C - unaged
- **Rutting** at High Pavement Temperature
 - Dynamic Shear Rheometer (DSR) - $G^*/\sin \delta$ (unaged & RTFO)
- **Fatigue** at Average Pavement Temperature
 - (DSR) - $G^*.\sin \delta$ (PAV aged)
- **Thermal cracking** at Low Pavement Temperature
 - Bending Beam Rheometer (BBR) - S(60), m(60) (PAV aged)
 - Direct Tension Tester (DTT) - Strain at failure
- **Durability** Properties - short term and long term
 - rolling thin film oven (RTFO), pressure aging vessel (PAV)
Rotational Viscometer

- Evaluates
 - handling and pumping properties
- ASTM D 4402
- Other Names: Brookfield viscometer, rotational coaxial cylinder viscometer
- Output
 - viscosity at 135 C
 - viscosity temperature chart for mix design
What are our problems?

1. Rutting in Asphalt Layer

![Diagram of rutting in asphalt layer]

- Original profile
- Weak asphalt layer
- Shear plane
Dynamic Shear Rheometer

• Evaluates
 – elastic and viscous properties
 – time and temperature effects

• Other Names
 – oscillatory shear rheometers
 – dynamic rheometers

• Output
 – complex shear modulus (G^*)
 – phase angle (δ)
Asphalt

 Applied Stress or Strain

 Oscillating Plate

 Asphalt

 Fixed Plate

 Test at Pavement Temperature

 Dynamic Shear Rheometer

 Applied Stress or Strain

 Oscillating Plate

 Asphalt

 Fixed Plate

 Test at Pavement Temperature

 τ_{max}

 Applied Shear Stress

 γ_{max}

 Resulting Shear Strain

 $G^* = \frac{\tau_{\text{max}}}{\gamma_{\text{max}}}$

 $\delta = \text{time lag}/w$

 Measures hardness

 Measures elasticity

 $\delta = \text{time lag}/w$
2. Fatigue of Pavements

“alligator” cracking
3. Low Temperature Cracking
Bending Beam Rheometer

- Evaluates
 - low temperature stiffness properties
- Output
 - creep stiffness
 - m-value
Results of the Bending Beam Rheometer

Log Creep Stiffness, S

$S(60)$

Thermal Stress build up

Log Loading Time

slope = m-value

$m(60)$

Thermal Stress relaxation

8 15 30 60 sec 120 240
Direct Tension Tester

- Evaluates
 - low temperature ability to stretch
- Output
 - tensile strain at failure before test

[Diagram showing the testing process with labels for load, length, and before test]
Direct Tension Testing

Load

failure stress = \(\frac{\text{Load at break}}{\text{area}} \)

failure strain = \(\frac{\text{elongation}}{\text{length before test}} \)
Failure Properties
Strength and Strain Tolerance

stress vs. strain

brittle
brittle-ductile
ductile
Asphalt Aging Behavior

• Asphalt Reacts with Oxygen and hardens

• During Construction - Short Term
 – hot mixing, placing, and compaction

• In Service - Long Term
 – hot climate worse than cool climate
 – So What?
 – *Pavement layer is brittle >> cracking*
Rolling Thin Film Oven
Short Term aging

controls
fan

empty bottle before
coated bottle after

air jet
bottle carriage
The Pressure Aging Vessel

- Pressure vessel
- Sample rack
- Sample pan
- Asphalt
- Air pressure
- Temperature probe
Superpave Binder Specifications

- Modulus
 - $S = 300\,\text{MPa}$
 - $m > 0.3$
 - $G\sin\delta = 5\,\text{MPa}$
 - $G*/\sin\delta = 0.001, 0.0022\,\text{MPa}$

- Temperature
 - Tmin
 - Tavg
 - Tmax
 - 135°C

- RTFO
 - η = 3.0 pa-s

- PAV-aged

- Unaged
Asphalt Binder Selection

• Performance Based
 – permanent deformation
 – fatigue cracking
 – low temperature cracking

• Physical Properties
 – criteria remain the same
 – temperature at which criteria achieved varies
 – measured on aged binder
Grade is First Selected from Pavement Temperatures

<table>
<thead>
<tr>
<th>Max Pave Temperature (HT)</th>
<th>PG 58 -</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min Pav Temperature (LT)</td>
<td>-16 -22 -28 -34 -40</td>
</tr>
<tr>
<td>Viscosity at 135 C</td>
<td>@ 135 C < 3.0 Pa-s</td>
</tr>
<tr>
<td>G*/sin d (ungaed)</td>
<td>@ HT > 1.0 Kpa</td>
</tr>
<tr>
<td>G*/sin d (RTFO-aged)</td>
<td>@ HT >2.2 Kpa</td>
</tr>
<tr>
<td>G*.sin d (RTfO+PAV-aged)</td>
<td>@ IT <5000 Kpa</td>
</tr>
<tr>
<td>S(60) (RTfO+PAV-aged)</td>
<td>@ LT <300,000 Kpa</td>
</tr>
<tr>
<td>M(60) (RTfO+PAV-aged)</td>
<td>@ LT >0.300</td>
</tr>
<tr>
<td>Strain @ failure (RTFO+PAV)</td>
<td>@ LT >1.0 %</td>
</tr>
</tbody>
</table>
Grading System

PG 64-22

- Performance Grade
- Average 7-day max pavement design temp
- Min pavement design temp
Binder PG Grades (AASHTO) PG HT- LT

Modified Bitumen

Unmodified Bitumen
Map for Production of PG Grades

- High-Temp Grade (HT)
- Low-Temp Grade (LT)

- Modified Bitumen
- Best Crude
- Standard Crude

PG HT-LT

-52 -46 -40 -34 -28 -22 -16 -10 -4
Methods of Selection

• Select base grade based upon:
 – Geographic Area
 – Air Temperature
 – Pavement Temperature

• Adjust base grade based upon:
 – Traffic Speed
 – Traffic Volume
Considering traffic volume and speed - adjustment to PG Grade

<table>
<thead>
<tr>
<th>Traffic Volume ESALs</th>
<th>Traffic Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Standing</td>
</tr>
<tr>
<td><0.3</td>
<td>(~ +1)</td>
</tr>
<tr>
<td>0.3 to < 3</td>
<td>+2</td>
</tr>
<tr>
<td>3 to < 10</td>
<td>+2</td>
</tr>
<tr>
<td>10 to < 30</td>
<td>+2</td>
</tr>
<tr>
<td>> 30</td>
<td>+2</td>
</tr>
</tbody>
</table>

+1 : Increase PG grade by 6 degrees; e.g. PG 64-22 to PG 70-22
Effect of Traffic Speed and Volume on Binder Selection

- Examples
- Base Grade PG 58 -22
 - for toll road
 - (high Volume) PG 64-22
 - for toll booth
 - (high volume and slow traffic) PG 70-22
 - for rest area
 - (high volume and standing traffic) PG 76-22
Thank You for your attention

Questions!